skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ceva, SofĂ­a"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hydrogels cross-linked by dynamic covalent chemistry (DCC) are stiff and remodelable, making them ideal biomimetics for tissue engineering applications. Due to the reversibility of DCC cross-links, the opportunity exists to transiently control hydrogel network formation through the use of small molecule competitors. Specifically, we incorporate low molecular weight competitors that reversibly disrupt the formation of hydrazone cross-links as they diffuse through a recombinant hydrogel. Using complementary experimental, computational, and theoretical polymer physics approaches, we present a family of competitors that predictably alter hydrogel gelation time and mechanics. By changing the competitor chemistry, we connect key reaction parameters (forward and reverse reactions rates and thermodynamic equilibrium constants) to the delayed onset of a percolated network, increased hydrogel gelation time, and transient control of hydrogel stiffness. Using human intestinal organoids as a model system, we demonstrate the ability to tune gelation kinetics of a recombinant hydrogel for uniform encapsulation of individual, patient-derived stem cells and their proliferation into three-dimensional structures. Taken together, our data establish a validated framework to relate molecular-level parameters of transient competitors to predicted macromolecular-network properties. As interest in biomimetic, DCC-cross-linked hydrogels continues to grow, these results will enable the rationale design of bespoke, dynamic biomaterials for tissue engineering. 
    more » « less